Polynomials over Galois Field
e Consider polynomials whose coefficients are taken from prime-order finite fields.
Primitive polynomials and Galois fields of order p™

e Let GF(q)[x] denote the collection of all polynomials a, + a,x + a,x* +--- +a,x" of

arbitrary degree with coefficients {a,} in the finite field GF(q).
o (3 +ax+ax’ +--+ax")+ (b, +bx+bx’ +-+bx")

= (8, +hy)+(a,+b)x+(a, +b,)x* +---+(a, +b,)Xx".

o (3 +ax+ax’ +--+ax")-(b+bx+bx’ ++b x")

=(ay-by)+[a, by +a,-b]x +[a,-by+a, b +a,-b,|X*+---+(a, b, )x"".
The coefficient operations are performed using the operations for the field from
which the coefficients were taken.

e Such a collection of polynomials forms a commutative ring with identity.
e Nonzero field elements are considered to be zero-degree polynomials.

The zero element, however, is not considered a polynomial at all, because most
metrics used with Euclidean rings of polynomials are undefined for the zero
element.

e Leto bearootof f(x). Then, f(x)

X" —1=> ord(a)‘n.

e Apolynomial f(x) is irreducible in GF(q)[x] if f(x) cannot be factored into a
product of lower-degree polynomials in GF(q)[x].
e All of the roots have the same order.
e Thesetof all roots of f(x) is one conjugacy class with respect to GF(q).

. f(X)

ord(«a

X _1 where ord(«) is the order of any root of f(x).

e A polynomial f(x) is irreducible in GF(q) if f(x) cannot be factored into a product of

lower-degree polynomials in GF(q)[x].

e A polynomial may be irreducible in one ring of polynomials, but reducible in
another.

e In fact, every polynomial is reducible in some ring of polynomials. The term
irreducible must thus be used only with respect to a specific ring of polynomials.

e Remark: In GF(2)[x], if f(x) has degree > 1 and has an even number of terms,

then it can’t be irreducible. Because 1 is its root, and hence x + 1 is one of its
factor.

e Irreducible polynomials of degree n in GF(2)[x]




Degree | Irreducible polynomials

1 X, Xx+1
2 X2+ x+1
3 X2+0+x+1,

X+x2+0+1

4 X*+0+0+x+1,
X*+x3+0+0+1,

X*+ 3+ X2+ x+1

S X°+0+0+x>+0+1,

XC+0+x3+0+0+1,

x° + x* + x* + x* + x +1 where exactly one of
%—J

the 4 middle terms is deleted.

e Any irreducible m"-degree polynomial f(x)e GF(p)[x] must divide x*"™* -1,

Remark for binary polynomials:

x”+1+1:(x+1)(zn:x‘)

i=0

For n odd, Zn:xi :(x“ +x“’1)+---+(x+l):(x+1)(x“’1+x“’3+---+1). It is
i=0

=0. Also, observe that
x=1

n .
clear that (x+1) is a factor because ZX'

zikglxi :(X+1)(§X2ij' .

Binary polynomials that miss alternate terms are not irreducible
e Lowest degree term is x = X is a factor.

k
e Lowest degree termis 1: > x**
i=0

2 n
. x2+1:(x+1)2, x4+x2+1:(x2+x+1)2.( x'j =%,

n
i=0

n 2
To see this, consider, (x”+1 +1)2 = (x+1)° (Z x‘] . Also,

(x”*l+1)2 =Xx"""% +1=(x +1)(2in§1x‘j:(x +1)2(Zn:x2"].

i=0



x* + x® + x* + x +1 can’t take just one of the middle terms because we left with
%/_J

even number of terms.
X° + x+1:(x2 n x+1)(x3 VG +1)

All roots of an irreducible polynomial have the same order.

Primitive polynomials: An irreducible polynomial p(x)e GF( p)[x] of degree m is

said to be primitive if mily{n: p(x)[x" —1} = p"-1.
p2-1) _
There are ————= binary primitive polynomials of degree n.
n

Primitive polynomials: An irreducible polynomial p(x)e GF( p)[x] of degree m is

said to be primitive if miNn{n: p(x)[x" —1} = p"-1.
p2-1) _
There are ———= binary primitive polynomials of degree n.
n

Given an irreducible polynomial of degree m, to test whether it is primitive,
divide it from x" —1 where m<n< p™ —1. If no such n gives 0 remainder, then it
is primitive. (The case when n = p™ — 1 is guaranteed to have 0 remainder.). If
there exists n, m<n< p™ —1, such that the remainder is not 0, then it is not
primitive.

Primitive polynomials are the minimal polynomials for primitive elements in a
Galois field.

Primitive polynomials of degree n in GF(2)[X]

Degree | Primitive polynomials

2 X2+ x+1

3 X2 +0+x+1,

X +x2+0+1

4 X* +0+0+X+1,

X +x3+0+0+1

S X°+0+0+x>+0+1,

XC+0+x3+0+0+1,

x° + x* + x* + x* + x +1 where exactly one of
%—/

the 4 middle terms is deleted.

Remark:




e A primitive polynomial p(x)e GF(p)[x] is always irreducible in GF(p)[x] (by
definition), but irreducible polynomials are not always primitive.
e Allirreducible polynomials in GF(Z)[X] of degree 2, 3, 5 are primitive.

e x'+x*+x*+x+1 is irreducible but not primitive in GF(2)[x].

min{n:x4+x3+x2+x+1x”—1}:5.

neN

The root o of an m"-degree primitive polynomial p(x)e GF(p)[x]

e Isalsobearootof x"" -1

e have order p™ —1. (and hence, is a primitive element in GF( pm))

e p" —1 consecutive powers of o form a multiplicative group of order p™ —1.

Let o be a nonzero root of f(x). Then, f (x)

x“—l:ord(a)‘n.

Proof. Because o be a root of f(x), we have f(a)=0.Because f(x)x"—1,we

also have «" -1=0. Recall that ¢" =1 < ord(a)‘n .

Let a,’s be roots of an irreducible polynomial f(x), then f (x)[x™*“) —1, where

ord(«) is the order of any root of f(x).

Proof. Because all roots of an irreducible polynomial have the same order, Vi
(&)™ =1. So, all roots of f(x) are also roots of x”**) ~1.

If o is a root of an m"-degree primitive polynomial p(x)e GF(p)[x], then

e amust also be aroot of x”" *—1 and ord(a)

p" —1.
Proof. By definition, p(x)[x" *-1.
e Let Bbe any root of x™“ —1, then Bis aroot of x* *—1.
i k
Proof. We have 8°*“) =1. Next, note that " :(ﬁ"“’(“)) where k e N

because ord(a)[p™ —1. Hence, B* ' =1 =1.

o XU —1‘ xP1o1

od(«) _1 are the roots of x*" 1.

Proof. Because all roots of x
The root e of an m"-degree primitive polynomial p(x)e GF(p)[x] have order

p™ —1. (and hence, is a primitive element in GF( pm))




Proof. Let o be an arbitrary root of p(x). We know that x**) —1‘ xP" 1. We

also have p(x) x**) _1 because p(x) is irreducible. Because p(X) is

primitive, p" -1 = TJQ{W p(x)

X" —1} . So, ord(er)> p" —1. But from
x°r(@) —ﬂxpm‘l—l, we have ord(a)< p" -1. So, ord(a)=p" -1.

Given that o has order p™ —1, then the p™ —1 consecutive powers of o form a

multiplicative group of order p™ —1.

The multiplication operation is performed by adding the exponents of the powers of

modulo (p" -1).

Let p(x)=x"+a, X" +---+aX+a, be primitive in GF(p)[x]. If «ris a root of

p(x), it must satisfy p(a)=a" +a, @™ +--+aa+a,=0. It follows that

"=(-a,,)a" " e+ (e )a+ (-l

The individual powers of « of degree greater than or equal to m can be reexpressed as

polynomials in « of degree (m — 1) or less.

Since ord(a) = p" -1, the distinct powers of & must have p™ —1 distinct nonzero

polynomial representations of the form b, ,a™™" +---+ba +b,. The coefficients {b,}

are taken from GF( p). So, there are p™ —1 distinct nonzero polynomial

representations available. A bijective mapping is then defined between the distinct
powers of « and the set of polynomials in « of degree less than or equal to (m — 1)
with coefficients in GF(p).

Construction of GF( p”‘) ;

Let & be a root of an m"™-degree primitive polynomial p(x)e GF(p)[x]. Then
ord(e)=p" -1 and the p™ -1 consecutive powers of c (a",al,...,amd(“)’l) are the

nonzero elements of the field GF(p™ ). Also, can express any power of o

(exponential representation) (or even any polynomials in ) as
b, ™" +---+ba +b, (polynomial representation).

m

i) _ q_l —_nM
Ord(a)_—gcd(i,q—l)’ q=p".

Construction of GF(p"):

Let o be a root of an m"-degree primitive polynomial p(x)e GF(p)[x]. Then

e ord(a)=p"-1.




e The p"—1 consecutive powers of « (a",al,...,a“d(“)’l) are the nonzero
elements of the field GF(p").

e Canexpress o" =(-a,,)a" " +---+(-a ) +(—3,)1. = Can express any power

of « (exponential representation) (or even any polynomials in @) as
b, ™" +---+ba +b, (polynomial representation).

e Can define bijective mapping between the distinct powers of « and the set of
nonzero polynomials in « of degree less than or equal to (m — 1) with coefficients
in GF(p).

e Addition is performed using the polynomial representation. One begins by
substituting the polynomial representations for the exponential representations.
The polynomials are then summed to obtain a third polynomial representation,
which may then be reexpressed as a power of a.

e Multiplication is performed through the use of exponential representation. The
exponents of the two elements being multiplied together are added together

modulo p" —1.

m

e Multiplication can also be performed through the polynomial representation. If
a® and " have the polynomial representations p,(«) and p,(«), respectively,

then a(a+b)mod(p"‘ —l)

has polynomial representation p, () p,(e) modulo p(a).
The polynomial representation for a finite field GF( pm) has coefficients in the
“ground field” GF(p). Clearly GF( pm) can thus be interpreted as a vector space over
GF( p) . The set {1,0(,...,0{’“*1} can be used as a basis for the vector space.

Let 8 <GF(2"), then —-g=3.

Proof. g+ f=/(1+1). Note that 1e GF(2), hence 1+1=0. Therefore,
p+p=,0=0.

Zech’s logarithms

Except in the prime-order field case, GF(q) addition is not as easy to implement as
multiplication. The simplest (though least efficient) approach is to construct a (g x q)
look-up table. A more efficient use of memory can be obtained through the use of
Zech’s logarithms, also known as “add-one tables.”

An add-one tables has two columns:
The first contains the logarithm of each element with respect to a primitive element ¢.

(log, (x))

The second column contains the logarithm to the base « of the corresponding element
in the first column after it has been incremented by one. (Ioga (x +1))



e *—0:log,0=>*.log,(0+1)=log,1=0.
In GF(2"): 0>*. (1+1=0)
e log,a' =imodord(a)
e Check:
e For GF(2"), note that &’ +1=a* < a* +1=a’ because ~1=1. So, also works
inpair j< k.
e We stop at o 2. But can check by calculate whether aa®? ="' =1.
e Addition in GF( pm) is then performed using the following scheme:

e Combine all terms that have the same exponent using modular addition of the
exponents (i.e., GF( p) addition of the “coefficients”)

e Arrange the resulting expression a® + a” +---+” in order of decreasing
exponents.

e Factor the expression into the form (---(((a“ +1)ozb’C +l)oz°’d +1)-~-)az .

The summation can now be performed as a series of add-one operations and
Galois field multiplications.

o o’ ratrat =(a* P +1)a’ ot ra =((a" +1)a"C +1)a +af
~(((a** +1)a"* +12)a +1)a"

o dfra’+at+l=((a* +1)a" +1)at +1

e Example: The construction of GF(4)

Because 4 = 22, we seek a primitive polynomial in GF(2)[x] of degree 2. Let
p(x)=x*+x+1. Let & be aroot of p(x). This implies that ord(c)=3 and

a’*+a+1=0,ie., a* =a+1. Then,

E Pol Vector-space
Xp. | Foly. Rep. Order | log,(x) | log,(x+1
a® 1 (1,0) 1 0 *
o a 0, 1) 3 1 2
a’ | a+l 1,1) 3 2 1
0 0 (0,0) - * 0

e Example: The construction of GF(8)
Because 8 = 23, we seek a primitive polynomial in GF(Z)[X] of degree 3. Let

p(x)=x>+x+1. Let & be aroot of p(x). This implies that ord(c) =7 and

a®+a+1=0,ie., a®=a+1. Then,



a'=at a=a’+a
a’=at a=ad*+a’=a+1+a’
a®=a’ a=ad’+a’+a=a+l+a’+a=a’+1.
c oo Vector-space
Xp. oly.
i I e LT e
° 1 (L, 0,0) 1 0 x
o a 0.1, 0) 7 1 3
a’ ol 0,0,1) 7 2 6
b 1+ o (1,1,0) 7 3 1
o' a+a’ 0,1,1) 7 4 5
a’ | l+a+a? (1,11 7 5 4
a® 1+a? (1,0,1) 7 6 2
0 0 ©, 0, 0) - * 0

Note also that « is a primitive element in GF(2°) = GF(8). a’ =1.

Example: The construction of GF(8)

Let p(x)=x"+x*+1. Let a be aroot of p(x). This implies that ord(a)=7

anda® =a?+1.

E);B PRC:;E)/.' Order | log,(x) | log, (x+1)
a® 1 1 0 *

at a 7 1 5

a’ a’ 7 2 3

a’ a’+1 7 3 2

a' | at+a+l 7 4 6

a’ a+l 7 5 1

a® &’ +a 7 6 4

0 0 - * 0

Note also that « is a primitive element in GF(23) = GF(8). a' =1.

e Example: The construction of GF(16)
Let p(x)=x"+x+1.

- ool Vector-space

Xp. oly. Rep. Order | log_(x) | log (x+1
o . s 9, (x) | log, (x+1)
0 0 (0.0,00 | - 0

o 1 (1,0,0,0) 1 0 *

o a 0,1,00 | 15 1 4




a? a? 0,0,1,0) 15 2 8
o’ o’ (0,0,0,1) 5 3 14
o a+1 (1,1,0,0) | 15 4 1
a’ a’ +a 0,1,1,0) 3 5 10
a® a’+a’ 0,0,1,1) 5 6 13
a’ & +a+l (1,1,0,1) 15 7 9
a® a’+1 (1,0,1,0) 15 8 2
a’ a*+a 0,1,0,1) 5 9 7
a® a’+a+l (1,1,1,0) 3 10 5
a't A +at+a 0,1,1,1) 15 11 12
a? | B+t +a+1| (1,1,1,1) 5 12 11
a® a*+a’+1 (1,0,1,1) 15 13 6
o™ a’+1 (1,0,0,1) 15 14 3

; o 15
Remark: the order is easily find by ord(a* )= ———.
Y y (a ) ged(k,15)

This follows from a theorem, or can be intuitively shown here as follows:
Consider, for example, o°. We want to find m_in{(oeg)I :1} . This happens iff

9i =0mod15 i.e. 159i . But 3 = gcd(15,9) which is a factor of 9 already divide

15. So we only need 5= _ b to divide i. The minimum of i for this to occur

gcd(15,9)
isi=5.
In this representation, the nonzero elements «' which are also in GF(4) is the
elements which satisfy 3i =0mod15, i.e., 15/3i. So, they are &°,a°,a™°. Hence,

GF(4)={0,La",a"}.

Euclidean Domains

A Euclidean domain is a set D with two binary operations “+” and “- ” that satisfy the
following:

1. D forms a commutative ring with identity.

2. Cancellation: if ab =bc, b =0, thena =c.

3. Every element a € D has an associated metric g(a) such that
a) g(@ < g(a-b) for all nonzero b € D.

b) For all nonzero a, b € D, g(a) > g(b), there exist qand r such thata=qgb +r
with r = 0 or g(r) < g(b).

e (s called the guotient and r the remainder.




e ¢(0) is generally taken to be undefined, though a value of -co can be assigned if
desired.

Examples of Euclidean Domains

e The ring of integers under addition and multiplication with metric g(n) = |n|
(absolute value).

e GF(q)[x]: the ring of polynomials over a finite field with metric
g( f(x))=degree( f(x)).
a is said to be a divisor of b (written a|b) if there exists c € D such that a-c=b.

An element a is said to be a common divisor of a collection of elements
{b,b,,....b,} ifabifori=1, ..., n.

If d is a common divisor of the {b;} and all other common divisors are less than d,
then d is called the greatest common divisor (GCD) of the {b;}.
e (= gcd(a,b) <> g isa common divisor of a and b, and ¥d common divisor of a

and b, d|g.

Euclid’s Algorithm

Euclid’s algorithm is a very fast method for finding the GCDs of sets of elements in
Euclidean domains.

Euclid’s Algorithm:

Let a, b be a pair of elements contained in a Euclidean domain D, where g(a) > g(b)
Let the indexed variable r; take on the initial values r.; =aand ro = b.

Proceed by using the following recursion formula

If ri.y = 0, the define ri using r,_, —q;r,_, =, where g(r,)<g(r._,).
Repeat until r, =0.
If =0, then r,_, =GCD(a,b).

Recursive system of equations:

a=qgb+r O<r<b
b=q,n+1, O<r,<r,
I =0, +1, Oo<n<r,

r,=q,,+r | 0<r <r

GCD(a,b)=r,.

Example



e GCD(336,54) . GCD(x5 X+ X+L X+ X2+ X +1)

336 =6(54) + 12
G4+ x5+x3+x+l=x(x“+x2+x+1)+(x2+l)

o a
54:41A2)/+6 //

12 = 2(6) + 0 x4+x2+x+1:x2(x2+1)+(x+1)

v
GCD(336, 54) = 6 x2+l=(x+1)(xl+1)+0

GCD(x5+x3+x+1,x4+x2+x+1):x+1

D" +1=(D+1)(D"*+ D" +.--+ D +1).

In a Euclidean domain, the remainder r; will always take on the value zero after a
finite number of steps.

The worst case: Euclid’s algorithm requires a maximal number of steps to complete
when a and b are consecutive Fibonacci numbers.

GCD(a,b,c)=GCD(GCD(a,b),c).
If B={b,b,,...,b,} isany finite subset of elements from a Euclidean domain D, then
B has a GCD d which can be expressed as a linear combination Z/lkbk , Where the

k

coefficients {4} <= D.

The extended Version of Euclid’s Algorithm
o =0, +h < [=F,-Gfi, g(ri)< g(ri—l)

e S=5,-0S, t=t,—qt,.

i ri gi |Si| t
-1 a -1 0
0 b -10] 1
1 I g (1| -0
2
GCD(a,b) s| ot
0

e Check: GCD(a,b)=sa+tb.

e Check: forallj, s,a+thb=r,.




e The extended Version of Euclid’s Algorithm
We wish to find s and t such that GCD(a,b) =sa+tb.

1. Asetof indexed variables {r,s;.t;} is given the following initial conditions:

r,=a, r=b,s,=1,s,=0,t,=0,t=1.

If r_, #0, then define r, using r, =r_, —qr_,, 9(r)<g(r.,).

2
3. Compute s, using s, , —q;S,_;, where ¢; is from step 2.
4.
5

Compute t; using t, =t,_, —qt,_,.
Repeat steps 2 through 4 until r, =0.

At this point r._, =GCD(a,b) and s_a+t_b=r_,.

| ri|Qi|Si| t
-lja|-1]1| 0
O|b|-]0] 1
16 a1 -q
2

Remark:
o forallj, s,a+tb=r;.

e a=bg+r,s=s,-qs,=1-90=1,t=t,-qt,=0-q1l=-0q,.

10
e Observe that the initial conditions for s; and t; is the identity matrix {O J.

e If B={b,b,...,b } isany finite subset from a Euclidean domain D, then B has a gcd

d which can be expressed as a linear combination Zﬂ«bk where the coefficients

{4}=D

Proof. Let S={"Ab, :{4} < D}. Letd be the element in S with the smallest
metric (g(d)). By definition, d € S = d = Ab, . We will show that d
is the GCD of the elements in B.
If d does not divide some element b, € B, then we can write b, =qd +r
where g(r)<g(d).But r=b —qd mustbeins, since b, anddareinS.

This contradicts the minimality of the metric of d in S. Thus, d is a
common divisor of all the elements in B.



Now let e by any other common divisor of the elements in B. We can then
write b =q/e foreach b € B. Then, d =) b => Age=e> Aq/. So,

d is a multiple of every common divisor and thus the GCD of all of the
elements in B.

e Let D be a Euclidean domain. Suppose that for a,b,ce D, a|(bc), butaand b are
relatively prime. Show that ac.

Proof. ged(a,b)=1= 3 s,teD sa+th=1. a|(bc) = bc=aq for some
geD.sa+th=1 = sac+thc=c = sac+tag=c = a(sc+tq)=c.

e All finite Euclidean domains are fields.

Proof. D forms a commutative ring with identity. Hence, only need to show the
existence of unique multiplicative inverse. Let x e D . |D| is finite; hence,

the sequence X, x*,x°,... must repeat. = 3 p,q q> p such that x” = x°
= x" =x?(x"") = by cancellation, x* " =1. = x(x""**)=1, thus x
has an inverse.

e Example: GCD(256,108)

i [di|Si|t
256 - 110
108|-|0]1
140 (2 (1| -2

28 12|-2|5
12 |13 |-7
4 |2-8|19
0

GCD(256,108) = 4 = 256(-8) + 108(19)
e Examples: GCD(x5 X+ x+Lx + X+ x+1)

ri Qi | Si ti
XCAx+x+1 ] -1 0
xX*4+x*+x+1]-|0 1
x* +1 x |1 X
X+1 X X3+l




GCD(x5+x3+x+1,x4+x2+x+1):x+1

= xz(x5 +x3+x+1)+(x3+1)(x4 + X? +x+1)



	Polynomials over Galois Field
	Primitive polynomials and Galois fields of order pm
	Zech’s logarithms
	Euclidean Domains
	Euclid’s Algorithm

